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Abstract——Ethanol exerts its biological actions
through multiple receptors, including ion channels.
Ion channels that are sensitive to pharmacologically
relevant ethanol concentrations constitute a heteroge-
neous set, including structurally unrelated proteins
solely sharing the property that their gating is regu-
lated by a ligand(s). Receptor desensitization is almost
universal among these channels, and its modulation
by ethanol may be a crucial aspect of alcohol pharma-
cology and effects in the body. We review the evidence
documenting interactions between ethanol and iono-
tropic receptor desensitization, and the contribution
of this interaction to overall ethanol action on channel
function. In some cases, such as type 3 serotonin, nic-
otinic acetylcholine, GABA-A, and �-amino-3-hydroxy-
5-methyl-4-isoxazolepropionate receptors, ethanol ac-
tions on apparent desensitization play a significant
role in acute drug action on receptor function. In a few
cases, mutagenesis helped to identify different areas

within a receptor protein that differentially sense n-
alcohols, resulting in differential modulation of recep-
tor desensitization. However, desensitization of a re-
ceptor is linked to a variety of biochemical processes
that may alter protein conformation, such as the lipid
microenvironment, post-translational channel modifi-
cation, and channel subunit composition, the relative
contribution of these processes to ethanol interactions
with channel desensitization remains unclear. Under-
standing interactions between ethanol and ionotropic
receptor desensitization may help to explain different
ethanol actions 1) when ethanol is evaluated in vitro
on cloned channel proteins, 2) under physiological or
pathological conditions or in distinct cell domains
with modified ligand concentration and/or receptor
conformation. Finally, receptor desensitization is
likely to participate in molecular and, possibly, behav-
ioral tolerance to ethanol, which is thought to contrib-
ute to the risk of alcoholism.

I. Introduction

Application of allosteric theory to ligand-receptor in-
teraction brought to pharmacology the fundamental con-
cept that receptors exist in multiple functional states
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before ligand binding (Wyman and Gill, 1990;
Colquhoun, 1998). Thus, differential actions of a given
ligand or structurally related ligands that are mediated
via a defined receptor could be attributed to differential
interaction (initial association and/or receptor conforma-
tional change upon binding) between the ligand(s) and
the different states of the receptor. These concepts have
been successfully applied to the heterogeneous set of
ligand-gated ion channels (LGICs).1 Indeed, for several
LGICs, experimental data from binding assays and sin-
gle-channel recordings complemented with kinetic mod-
eling, seem to validate the concepts formulated above
(Dilger et al., 1995; Spivak, 1995; Jones and Westbrook,
1996; Auerbach and Akk, 1998; Colquhoun, 1998; Bian-
chi and Macdonald, 2001; Hille, 2001).

Differential sensing of a ligand (or structurally related
ligands) by different functional states of a receptor re-
quires that each discernible state contribute with differ-
ent chemical groups and/or forces to ligand-receptor in-
teraction. Differences in chemical groups or forces may
alter the ligand initial association, ligand-receptor dis-
sociation equilibrium, and/or receptor activation upon
ligand binding, leading to the different pharmacological
responses. Disregarding the specific process contribut-
ing to the different pharmacological responses, the in-
volvement of distinct chemical groups and forces paves
the way for pharmacological selectivity.

However, the possibility that different channel recep-
tor states are differentially targeted by a given (or even
similar) modulating ligand(s) appears far-fetched when
it comes to consideration of the so-called “promiscuous
ligands.” These structurally simple molecules 1) are
known to modulate the activity of a wide variety of
proteins, including most LGICs, bringing into question
the selectivity of drug action; 2) exert their effects by
acting at the high micromolar to millimolar range in the
aqueous medium, as opposed to most central nervous
system (CNS)-targeted therapeutic drugs, neuropep-
tides, and some simple neurotransmitters, which pri-
marily modulate ion channel proteins by acting at the
picomolar to low micromolar range (although it must be
noted that most small-molecule neurotransmitters, such
as GABA and glutamate, activate LGICs at micromolar
to millimolar concentrations); 3) their exact docking lo-
cus in the receptor-channel protein remains unknown. A
prototypical example of these agents is ethyl alcohol
(ethanol), a drug that alters several body functions and
behaviors by modifying the activity of a wide variety of
receptors, including LGICs within and outside the CNS)

(Little, 1991; Harris, 1999; Woodward, 2000; Fleming et
al., 2001; Narahashi et al., 2001; Lovinger and Crabbe,
2005). Considering ethanol’s widespread targeting of
structurally unrelated LGICs (Lovinger, 1997; Harris,
1999), the drug’s failure to alter receptor function at
aqueous concentrations that are normally reached by
active ligands to modify LGIC function, and the diffi-
culty in defining, using clear-cut structural methods, the
ethanol-recognition site in the LGIC receptor protein, it
sounds a bit paradoxical that this promiscuous ligand
could differentially interact with different states of a
given LGIC.

This short review will critically summarize the in-
creasing evidence documenting that ethanol at concen-
trations that modify LGIC function and cell physiology
can indeed differentially interact with distinct states of
a given receptor channel. In particular, we focus our
attention on interactions between ethanol and LGIC
desensitization. We can obtain from classic pharmacol-
ogy a definition of desensitization as the process(es) that
leads to the transient character of a receptor-mediated
effect in response to protracted or repeated exposure to a
given ligand or ligands that bind to the same receptor
(homologous desensitization), or in response to ligands
that bind to different receptors yet share downstream
signaling cascades (heterologous desensitization) (Tay-
lor and Insel, 1990). It must be emphasized that these
two forms of desensitization do not correspond to two
unequivocal biophysical mechanisms. For the time be-
ing, however, operational definitions provide a good
starting point to help explain our interest in the inter-
actions between ethanol and the desensitized states of
LGIC. First, for LGIC-mediated currents that are poten-
tiated when first exposed to ethanol, an increased frac-
tion of desensitized “receptors” in the overall population
of “naive receptors” (i.e., that never experienced the drug
before) will lead to reduced receptor-mediated current.
Furthermore, as agonist and/or ethanol presence contin-
ues, the contribution of desensitized receptors to the
overall channel population will increase. This mecha-
nism can explain, or at least contribute to, the so-called
“acute tolerance” to ethanol exposure, which is the re-
duced response to a dose of ethanol that develops within
minutes of drug application to a naive system (Kalant,
1998). Thus, desensitization induced by either pro-
tracted or repeated ethanol exposure and a fast and
significant desensitization process before ethanol expo-
sure can both lead to reduced responsiveness of LGICs to
alcohol. It is noteworthy that reduced responsiveness to
ethanol is one of the characteristics or “endophenotypes”
that are thought to contribute to the risk of developing
alcoholism (Schuckit, 1985, 2000). Such a link between
reduced alcohol responses and risk for alcoholism devel-
opment, together with the involvement of LGICs in al-
cohol actions in the body (Little, 1991; Lovinger, 1997;
Harris, 1999; Woodward, 2000; Fleming et al., 2001;
Narahashi et al., 2001; Lovinger and Crabbe, 2005),

1 Abbreviations: LGIC, ligand-gated ion channel; CNS, central
nervous system; nAchR, nicotinic acetylcholine receptor; NMDA,
N-methyl-D-aspartate; Po, channel open probability; BK, large con-
ductance, voltage- and calcium-gated potassium; AMPA, �-amino-3-
hydroxy-5-methyl-4-isoxazolepropionate; 5-HT, 5-hydroxytrypta-
mine; GluR, glutamate receptor; AMPAR, AMPA receptor; NMDAR,
NMDA receptor; GIRK, G protein-coupled inwardly rectifying
potassium.
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provide toxicological and clinical relevance to the study
of acute tolerance (LGIC desensitization in particular)
and alcohol exposure.

Second, biomedical research on alcoholism relies
heavily on animal and in vitro cell models. Reductionist
approaches, such as studying ethanol action on recom-
binant LGICs expressed in isolated cells, in cell mem-
branes, or, after channel protein reconstitution, into ar-
tificial lipid bilayers, are ideal to obtain information
about ethanol site(s) of action and modus operandi on
the receptor itself. These reductionist approaches can be
followed by more integrative studies in which ethanol
action can be studied in vivo, with the target under
study being genetically or pharmacologically manipu-
lated to assess the involvement of the target in alcohol
actions. This knowledge will help to identify, among the
myriad of macromolecules in the living organism that
can interact with ethanol and other promiscuous li-
gands, the relevant targets of ethanol actions in the
body. Moreover, in vitro and in vivo approaches (the
latter incorporating pharmacokinetic considerations),
will help to design pharmacological treatments that, by
modulating relevant targets of ethanol action, may be of
therapeutic benefit in alcohol intoxication or alcoholism.
Unfortunately, the most basic studies suffer a prema-
ture setback when similar LGICs (even recombinant
channels with similar subunit composition) expressed in
a defined, isolated in vitro system, respond differently to
short-term ethanol exposure (Borghese and Harris,
2007; Botta et al., 2007; Olsen et al., 2007).

Assessment of the receptor response to a modulator
becomes critically dependent on the time course over
which the response fades from its initial magnitude in
the naive system. Moreover, if desensitization processes
are fast enough, the response of the naive system to a
modulator can be blunted before the experimenter
records it. For most LGICs, desensitization occurs
within milliseconds or seconds (Lovinger, 1997). Thus,
slow drug application may cause the investigator to
study an LGIC population that is largely desensitized
and/or just recovering from desensitization. In addition,
desensitization rate is often a monotonic function of
ligand concentration. Thus, lower agonist concentra-
tions would produce slower desensitization and ethanol
would still be effective, despite slow agonist delivery.
These considerations underscore the critical importance
of rapid agonist application in the study of ethanol ac-
tion on LGICs (Lovinger, 1997). Thus, different agonist
perfusion rates and/or time of evaluation of ethanol ac-
tion would likely result in different predominance of
desensitized receptors. The relative predominance of de-
sensitized receptors can explain or, at least contribute
to, different results in studies of ethanol action, even
when drug action on LGICs is evaluated in a highly
simplified in vitro system, such as that defined by re-
combinant channel proteins reconstituted into a con-
trolled lipid environment.

Finally, it has been speculated that in addition to
their fast binding to LGICs and other postsynaptic re-
ceptors, neurotransmitters exert their biological actions
via a slower process: disruption of the neuronal mem-
brane lipids with consequent nonselective LGIC desen-
sitization. This putative molecular basis of anesthesia
could provide an explanation for the broadly conserved
sensitivity to anesthetic agents found across different
animal species (Sonner, 2002, 2008). Thus, neurotrans-
mitters have been hypothesized as the endogenous an-
esthetics, “the survival advantage conferred by their
proper membrane-mediated desensitization of receptors
explaining the selection pressure for anesthetic sensitiv-
ity” (Cantor, 2003). Evaluation of channel desensitiza-
tion of a given receptor by ethanol or anesthetic in the
presence of different neurotransmitters will be critical to
help to answer this fundamental problem of evolution-
ary biology.

Although ethanol is our focus, in a few cases we con-
sider other simple molecules, including ethanol analogs,
other n-alcohols, and small inhalational anesthetics, be-
cause results with these agents will help us to under-
stand ethanol and desensitization of a particular LGIC
receptor. Finally, we should note that the studies of
ethanol action on LGICs have been performed using a
wide range of concentrations, including levels that far
exceed those reached in circulation that would kill a
vertebrate. Considering that the blood alcohol level con-
stituting legal intoxication in the United States is ap-
proximately 18 mM, and recent criteria proposed for the
existence of a defined ethanol-recognizing site in a pro-
tein receptor (Harris et al., 2008), we focus on in vitro
studies documenting modulation of LGICs by aqueous
concentrations of ethanol smaller than 150 mM.

II. Of Desensitization and Receptors

Most studies assessing the role of LGIC desensitiza-
tion during short-term ethanol exposure report drug
action on macroscopic ionic current. Total (macroscopic)
ionic current is determined by the independent contri-
bution of channel unitary conductance (�), individual
open probability (Po), and the number of channels
present in the membrane under study (N). Thus,
changes in N, although distinct from modifications that
lead to desensitization of the individual receptor, cannot
be excluded from contributing to a reduced alcohol re-
sponse, particularly when a decrease in total macro-
scopic current is observed. The molecular mechanisms
that can lead to a decrease in N are numerous, from
changes in gene expression to internalization of mem-
brane channel protein into the cell via receptor-medi-
ated endocytosis or other type of cell membrane inter-
nalization. However, the experimental system and
conditions may help to sort out some of the mechanisms
underlying ethanol and/or ligand-induced decrease in N.
For example, changes in gene expression with modified
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expression of channel subunit isoforms are unlikely to
occur during brief (seconds to several minutes) applica-
tions of ligand or ethanol and certainly will not contrib-
ute significantly to drug action when ligands are probed
on channel proteins studied in isolated membrane
patches. In addition, the use of cell-free membrane
patches when studying changes in LGIC responses by
electrophysiological methods makes it very unlikely that
changes in N could be attributed to cell catabolism of
channel protein. Moreover, membrane internalization of
channels cannot contribute to a time-dependent de-
crease in channel steady-state activity (NPo) when the
phenomenon is studied with channel proteins reconsti-
tuted into artificial, simple lipid bilayers. Finally, the
rapid recovery from ethanol actions once the drug is
removed from the preparation, seen in many studies,
argues against a role for internalization or other mech-
anisms with slow rates of recovery.

In principle, block of the ionic conductance pathway or
change in LGIC conformation leading to decreased �
could also contribute to decreased macroscopic current.
Decreased unitary conductance, however, may be appar-
ent only when transitions between alcohol-bound and
alcohol-free receptor within bursts of activity are too fast
to be resolved. This has been reported for long-chain
alcohols and nicotinic acetylcholine receptors (nAchRs),
which may result in a time-dependent block of macro-
scopic current (Dilger et al., 1994; Forman, 1998; God-
den et al., 2001; Zuo et al., 2001, 2004). In addition,
trichloroethanol at concentrations above 20 mM (as well
as hexanol and octanol) causes a decrease in serotonin-
mediated cation current amplitude that cannot be dis-
tinguished from channel desensitization (Zhou and Lov-
inger, 1996; Stevens et al., 2005). Ethanol inhibits the
function of N-methyl-D-aspartate (NMDA) type gluta-
mate receptor, as will be discussed in section IV, but this
inhibition does not involve a decrease in � (Lima-Land-
man and Albuquerque, 1989; Wright et al., 1996). To our
knowledge, there is no evidence documenting that de-
creased � contributes to the reduction in LGIC-mediated
current in response to protracted or repeated exposure
to clinically relevant ethanol concentrations.

Therefore, changes in Po are the main end product of
ethanol- or ligand-induced modification of LGIC desen-
sitization, the latter being a significant component of the
channel “gating” processes [for practical considerations,
we use the term “gating” to designate the whole set of
channel dwelling states, and kinetic transitions among
them, that determine channel activity; this broad defi-
nition engulfs the usual definition (i.e., the channel re-
sponse to a specific stimulus, which leads to opening or
closing of the channel pore; Hille, 2001)]. In the simplest
possible case, when the LGIC has a single desensitized
state, ethanol- or ligand-modification of gating leading
to altered desensitization may encompass modification
of entry into the desensitized state, modification of exit
from the state (destabilization/stabilization of desensi-

tized state), or a combination of both. This simplicity
rarely applies. For example, 36Cl� determinations of
GABA-activated chloride flux in native brain mem-
branes shows, at a minimum, two desensitization ki-
netic components, each affected by drugs, including pen-
tobarbital (Cash and Subbarao, 1987, 1988). High
concentrations of activating internal calcium drive po-
tassium channels of the BK type (see section V) into a
low Po gating mode (Rothberg et al., 1996), with channel
dwelling within this mode being favored by ethanol (Liu
et al., 2008). Dwell-time analysis of the calcium-driven
BK low Po mode, however, reveals three open-time and
eight closed-time constants (Rothberg et al., 1996), sug-
gesting the existence of at least 11 channel kinetic
states.

For the vast majority of LGICs, whether inhibitory or
excitatory (see sections III–VI), ethanol is considered a
heterotropic ligand; that is, it interacts with the “recep-
tor” (see next paragraph) at a site different from that of
the receptor-activating ligand (Peoples et al., 1996; Mi-
hic et al., 1997; Li et al., 1998; Harris et al., 2008; Liu et
al., 2008). Thus, when considering modified LGIC desen-
sitization in response to protracted or repeated presen-
tation of ligand, the altered responsiveness can occur as
consequence of molecular adaptations in distinct ago-
nist-receptor sites, ethanol-receptor sites, or both. In-
deed, fluorescent labeling of nAchRs shows that isoflu-
rane at twice the half-maximal effective concentration
(EC50) for general anesthesia in tadpoles (0.6 mM), as
well as saturating concentrations of butanol, increases
the fraction of receptors preexisting in the desensitized
state before agonist-induced desensitization (Raines et
al., 1995), demonstrating that anesthetics/n-alcohols
can desensitize LGICs in the absence of agonist.

When trying to delineate possible biophysical mecha-
nisms that underlie ethanol interactions with the desen-
sitized states of a receptor, we immediately encounter
the difficulty of defining what an ethanol receptor may
be. In classic pharmacology, a receptor is usually defined
as any biological recognition unit that confers a response
or transduces a signal to a drug or a naturally occurring
ligand. In addition, it is usually assumed that receptors
of peptidic nature have at least a tertiary structure
(Taylor and Insel, 1990; Kenakin, 2006). Thus, mecha-
nisms of decreased response to an agonist are deter-
mined by protein conformational change secondary or
not to post-translational modification (phosphorylation,
lipidation, glycosylation, and the like), kinase mem-
brane translocation, or channel-associated membrane
protein interactions. In some cases, specific protein do-
mains that primarily control LGIC desensitization but
not other aspects of ligand-receptor interaction, such as
initial binding, have been identified [e.g., the flip-flop
cassette in �-amino-3-hydroxy-5-methyl-4-isoxazolepro-
pionate (AMPA) receptors; Partin et al., 1994]. LGICs,
however, are homo- and heteromeric protein complexes,
raising the possibility that differential subunit composi-
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tion (and thus subunit replacement) or negative cooper-
ativity among subunits could play a role in diminished
responsiveness to ligand binding. One report made the
interesting suggestion that nAchRs made of �3-�4 sub-
units, but not those of �3-�2, �4–1�4, or homomeric �7,
display significant tolerance to short-term ethanol expo-
sure (Covernton and Connolly, 1997). However, it should
be noted that another study examining human �3-�4
nAchRs indicated little effect of ethanol on this receptor
subtype (Cardoso et al., 1999). The ethanol preapplica-
tion protocol used in this study mimics continuous eth-
anol exposure during intoxication but may also bring
about acute tolerance. Both of these studies were con-
ducted using whole Xenopus laevis oocytes, a prepara-
tion in which desensitization cannot be accurately mea-
sured. Thus, it is not yet known whether ethanol effects
on desensitization contribute to the different results ob-
tained in the two studies.

In addition, LGIC channel complexes span the whole
lipid bilayer and are often associated with chaperone
proteins in a dynamic lipid environment (Boyd et al.,
2002; Bollan et al., 2003; Millar and Harkness, 2008;
Schwappach, 2008). Thus, LGIC desensitization can also
involve changes in channel complex composition of, dis-
tribution of, or association with the LGIC immediate
lipid microenvironment, as characteristically exempli-
fied by nAchRs (Rankin et al., 1997; Baenziger et al.,
2000; Barrantes, 2004; Nievas et al., 2007). Matters
become more complicated for ethanol because several
critical “ethanol recognition areas” that have been pro-
posed in LGICs (nAchRs, GABAA, glycine receptors) are
mapped to channel protein transmembrane areas (For-
man et al., 1995; Mihic et al., 1997; Mascia et al., 2000;
Ueno et al., 2000; Zhou et al., 2000; Harris et al., 2008)
where both drug and receptor are in close contact with
membrane lipids. In this case, it becomes a challenging
task, if at all possible, to separate a “protein component”
from a “lipid component” when trying to understand
the structural bases of ethanol action on overall re-
ceptor activity in general and receptor desensitization
in particular.

Following these generalizations, in the next two sec-
tions we consider the experimental evidence document-
ing ethanol differential interactions with desensitized
LGIC states, analyzing each LGIC family, class, or sub-
type separately.

III. Ethanol and Desensitization of Receptor
Channels of the Cys-Loop Family

Ethanol effects on desensitization play a prominent
role in acute drug action on LGICs. Ethanol and some
longer chain alcohols potentiate the function of several
LGICs of the “Cys-loop” family, including the glycine
and GABAA anion channels, and the type 3 serotonin
(5-HT3) receptor and nAchR cation channels. These re-
ceptors are characterized by their similar structural fea-

tures, including four transmembrane (TM4) segments
per subunit, a pentameric holoprotein structure, a full
membrane-spanning pore region (TM2), and a short loop
defined by a disulfide bond in the amino terminal do-
main that gives this subfamily its name (Conley, 1996;
Lovinger, 1997). At certain receptor subtypes, ethanol
actions occur at concentrations relevant to behavioral
intoxication, and there is now a large body of literature
indicating that ethanol effects on LGICs contributes to
intoxication and other actions of the drug (Lovinger,
1997; Harris et al., 2008).

A. Type 3 Serotonin Receptor

In discussing ethanol effects on cys-loop LGICs, our
initial focus will be on 5-HT3 receptor, because alcohol
effects on this LGIC are well characterized. Potentiation
of 5-HT3 LGICs by ethanol and other alcohols is a robust
form of allosteric modulation that has enabled investi-
gators to examine alcohol interactions with desensitized
and other functional channel states using a relatively
simple LGIC. Functional 5-HT3 receptors can be formed
by assembly of at least two subunits (5-HT3A and
5-HT3B; Davies et al., 1999; Jensen et al., 2008), but
fully functional homopentameric channels can be made
by 5-HT3A (Maricq et al., 1991). This LGIC shows robust
expression in various heterologous expression systems,
including mammalian cells (Lovinger and Zhou, 1994,
1998). Furthermore, several neuroblastoma cell lines
originally developed in the Nirenberg laboratory express
endogenous homomeric 5-HT3A receptors (Jensen et al.,
2008). The kinetics of the 5-HT3A receptor-channel are
generally slower than those exhibited by most other
LGICs (Zhou et al., 1998; Solt et al., 2007). Desensitiza-
tion, usually estimated from measurement of current
decay in the continuous presence of agonist, occurs over
a time course of seconds. The estimated forward rate
constant for desensitization is 1 sec�1. We were sur-
prised to find that a similar time course is found for
5-HT3A deactivation; that is, the process of agonist un-
binding and channel closing, which is usually estimated
by current decay after brief agonist exposure and rapid
removal (Zhou et al., 1998; Solt et al., 2007). This behav-
ior can be explained by a kinetic scheme in which chan-
nel closing is dominated by desensitization even after
agonist removal (i.e., the “real” deactivation is much
slower than desensitization) (Solt et al., 2007). The slow
channel kinetics of 5-HT3A, along with other factors
described above, have made it easy to apply electrophys-
iological and pharmacological techniques to the study of
this LGIC.

Ethanol potentiates 5-HT3A function at concentra-
tions obtained in circulation during intoxication (25–100
mM) (Lovinger, 1991; Lovinger and White, 1991; Machu
and Harris, 1994). A variety of other alcohols and small-
molecule volatile anesthetics have a similar action (Jen-
kins et al., 1996; Zhou and Lovinger, 1996; Stevens et
al., 2005). Alcohols with chain lengths up to six carbons
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produce potentiation, whereas inhibition is observed
with longer, more hydrophobic alcohols (Jenkins et al.,
1996). The potentiating effect of ethanol and other alco-
hols is observed in neuroblastoma cells and neurons, as
well as in all heterologous expression systems examined
to date (Lovinger and White, 1991; Machu and Harris,
1994; Sung et al., 2000), facilitating the study of alcohol
interactions with the kinetics of this LGIC. When the
5-HT3B subunit is added to the receptor to the receptor
complex, ethanol-induced potentiation is lost and the
efficacy of potentiation by other alcohols and anesthetics
is greatly reduced (Hayrapetyan et al., 2005; Stevens et
al., 2005). Inclusion of the B subunit increases the rate
of most of the receptor-channel state transitions, indi-
cating a possible loss of state-dependent alcohol effects
in the heteropentameric 5-HT3 receptor complex (Stew-
art et al., 2003).

Ethanol potentiation of the function of 5-HT3A and
other cys-loop LGICs is most commonly characterized by
an increase in the magnitude of current produced by a
given concentration of agonist (the so-called peak cur-
rent). This increase is usually observable only at rela-
tively low agonist concentrations, because ethanol in-
creases Po and thus the alcohol effects are occluded at
high agonist concentrations when Po is near maximum
(Lovinger and White 1991; see also Eggers and Berger,
2004 for similar findings with glycine receptors). How-
ever, investigators examining 5-HT3 as well as nAchRs
and glycine LGICs often observe that ethanol and other
alcohols increase the rate of current decay in the contin-
uous presence of agonist (Zhou et al., 1998). The first
assumption that is often made from this result is that
ethanol increases the rate of the desensitization process
itself (i.e., the desensitization rate constant). However,
the situation is more complex. For the 5-HT3 LGIC, the
rate constants governing desensitization [i.e., the rate
constants governing channel entry into (Kd�) and exit
from (Kd�) the desensitized state] do not vary directly
with agonist concentration (Solt et al., 2007; see kinetic
model in Fig. 1). The rate of current decay, however,
does exhibit a dependence on agonist concentration be-
cause increasing receptor occupancy by the agonist in-
creases Po, with increased forward rate constant for
channel activation. As channels open, they can transi-
tion into the desensitized state at a rate primarily de-
termined by the forward rate constant Kd�, and the
faster the channels open, the faster the whole process
will occur. Thus, in the presence of drugs like ethanol,
which increase Kd� (and in some cases also decrease
receptor deactivation; Zhou et al., 1998), current decay
will increase in the presence of drug if applied in the
presence of a nonsaturating agonist concentration.

The “true” effect of ethanol on desensitization (i.e.,
any possible drug modulation of Kd� and/or Kd�) can be
estimated using kinetic models of receptor channel func-
tion. Whole-cell or single-channel data can be simulated
using a given kinetic scheme and rate constants can be

adjusted to produce changes in the simulated current
that adequately resemble the changes produced by a
drug of interest. An accurate model can be developed by
using the kinetic scheme to fit experimentally derived
data using iterative nonlinear curve fitting and/or global
analysis (Colquhoun and Hawkes, 1995; Cox et al., 1997;
Zhou et al., 1998; Liu et al., 2008; Shelley and Magleby,
2008)

One way to observe the true alcohol effect on desensi-
tization is to examine the current activated by a satu-
rating agonist concentration, and experiments of this
type have been performed on the 5-HT3A receptor. Un-
der such conditions, ethanol and other alcohols produce
a slowing of desensitization and an increase in steady-
state current (Zhou et al., 1998; Hu et al., 2006), indi-
cating that alcohols actually slow Kd� or affect the Kd�/
Kd� equilibrium. Kinetic models of receptor function and
alcohol action indicate that decreased desensitization is
necessary to fully explain alcohol actions on 5-HT3A
receptors (Zhou et al., 1998). Moreover, recent data and
refinement of kinetic models also suggest that measure-
ments of 5-HT3 deactivation most likely reflect receptor
desensitization, as the desensitization pathway seems to
offer the fastest exit from the open state even after
removal of extracellular agonist (Solt et al., 2007). Thus,
the slowing of deactivation by alcohols probably reflects
decreased desensitization as well.

B. Nicotinic Acetylcholine Receptor

As described for 5-HT3 receptors in the previous para-
graphs, ethanol modulation of nAchRs is widespread
and well characterized. Indeed, modulation of nAchR-
mediated currents by ethanol has been reported with
native nAchRs from Torpedo californica (Wu et al.,
1994), PC12 cells (Nagata et al., 1996), and cultured
neurons (Aistrup et al., 1999; Zuo et al., 2001), as well as
with recombinant nAchRs expressed in X. laevis oocytes

FIG. 1. A general kinetic scheme for the gating of the 5-HT3 ligand-
gated ion channel. Transitions between channel states are governed by
rate constants denoted above and below the arrows. Although the main
pathway governing desensitization is expected to occur at full occupancy
of the receptor by the ligand (A3O7 A3D), entry into desensitized states
may occur from partially ligated channel states (A2O, A1O) and even the
unligated, open channel receptor; r � receptor, A � agonist, O � open
channel state(s), D � desensitized state(s). [Adapted from Hu XQ and
Lovinger DM (2008) The L293 residue in transmembrane domain 2 of the
5-HT3A receptor is a molecular determinant of allosteric modulation by
5-hydroxyindole. Neuropharmacology 54:1153–1165. Copyright © 2008
Elsevier, Ltd. Used with permission.]
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(Forman and Zhou, 1999, 2000; Borghese et al., 2002) or
after transfection of cell lines (Zuo et al., 2002). How-
ever, modulation of nAchR currents by alcohols varies
drastically, even rendering different qualitative out-
comes: potentiation, refractoriness, and inhibition of
current have all been reported, depending upon receptor
subunit composition, agonist (nicotine, acetylcholine,
etc.) concentration, alcohol species and concentration,
and other experimental recording conditions.

In brief, nAchRs are made of a single, pentameric
transmembrane protein, each subunit spanning the
membrane bilayer (Conley, 1996). nAchRs in skeletal
muscle and T. californica electric organ have an �12�1��
stoichiometry (where subscripts denote number of a
given subunit type), with an � subunit substituting for �
in some adult skeletal muscles (Conley, 1996; Millar and
Harkness, 2008). Neuronal nAchRs display high re-
gional variety in subunit composition, heteromeric
�42�23 and homomeric �7 being the two receptor types
that predominate in vertebrate brain (Lindstrom, 2003;
Nashmi and Lester, 2006). After expression in Xenopus
laevis oocytes, heteromeric nAchRs resulting from com-
binations of �4 or �2 with �4 or �2 subunits elicit cur-
rents that are potentiated by ethanol, whereas most
studies report that homomeric �7-mediated currents are
inhibited (Cardoso et al., 1999; Narahashi et al., 1999;
Zuo et al., 2002). These differences are not limited to
heterologously expressed recombinant channels, be-
cause native neuronal nAchRs also show differential
responses to ethanol, �4�2-mdiated currents being po-
tentiated and �7-mediated currents being inhibited
(Narahashi et al., 1999, 2001). It is noteworthy that
�7-mediated currents display notoriously fast desensiti-
zation. Thus, perhaps the inhibitory effect of ethanol on
these homomeric nAchRs reflects enhanced desensitiza-
tion of the receptor-channel resulting indirectly from a
potentiating effect of ethanol, as considered above for
5-HT3 receptors.

Like 5-HT3 receptors, and also reported with GABAA
and glycine receptors (see section III.C), ethanol (�100
mM) consistently potentiates nAchR currents that are
evoked by low agonist concentrations, an effect due pri-
marily to ethanol-induced stabilization of channel open
states (Wu et al., 1994; Forman and Zhou, 1999; Zuo et
al., 2004). It has also been observed that ethanol in-
creases the rate of current decay in the continuous pres-
ence of agonist (Nagata et al., 1996), suggesting ethanol
modulation of receptor desensitization. nAchR desensi-
tization, however, involves not one but several distin-
guishable kinetic processes and is regulated by several
biochemical mechanisms, their modulation by ethanol
still being fully unresolved.

A classic, simple model of nAchR kinetics involves
sequential binding of two molecules of agonist to the
channel closed state, upon which the channel opens
(Colquhoun and Sakmann, 1985; Lingle et al., 1992).
Openings in the absence of ligand are possible yet highly

infrequent (Grosman and Auerbach, 2000). From the
very early studies, however, it became evident that con-
tinuous exposure to agonist leads to progressive decre-
ment of nAchR-mediated macroscopic currents, leading
to the pioneering conceptualization of LGIC desensitiza-
tion (Katz and Thesleff, 1957). This desensitization of
macroscopic current is a function of agonist concentra-
tion, reaching a maximum at saturating acetylcholine
concentration (low millimolar), as reported in studies of
BC3H-1 myocytes (Dilger and Liu, 1992). Later, fast-
resolution single-channel recordings revealed that
nAchRs can enter several desensitized states of varied
average duration (Auerbach and Akk, 1998), leading to
the standard distinction between “fast” and “slow” de-
sensitized states.

Channel entry into desensitization varies, first and
foremost, with nAchR subtype. Agonist (nicotine) evokes
rapid (within a few milliseconds) desensitization of the
current mediated by chick �7 or �8 homopentameric
nAchRs expressed in X. laevis oocytes, as well as current
passed by bungarotoxin-sensitive nAchRs in rat hip-
pocampal neurons. This fast component of desensitiza-
tion in the continuous presence of ligand is not observed
with bungarotoxin-insensitive nAchRs in rat hippocam-
pal neurons or adult rat cerebellum (reviewed in Conley,
1996). Ethanol, however, can potentiate channel re-
sponses to weak partial agonists such as suberyldicho-
line even when the receptor site is fully occupied, indi-
cating that this short-chain alcohol most likely increases
nAchR Po in the absence of changes in agonist affinity.
This conclusion is also supported by the observation that
the apparent dissociation constant for suberyldicholine
self-inhibition is not altered in the presence of ethanol
(Wu et al., 1994).

Results with longer n-alcohols bring additional in-
sight into ethanol interactions with the desensitized
nAchRs. Long-chain n-alcohols (C4 and above) do not
activate but inhibit T. californica nAchRs expressed in
X. laevis oocytes (Forman et al., 1995; Forman and Zhou,
2000), and human �4�2 receptors expressed in human
embryonic kidney cells (Zuo et al., 2004). Furthermore,
the dissociation constant for n-alcohol block of cultured
rat myotubule nAchRs decreases with increasing chain
length, from 8 to 0.15 mM for pentanol to octanol, re-
spectively (Murrell et al., 1991). The affinity of nAchRs
for agonist and thus a fluorescent signal from bound
agonist increases when the receptor enters the desensi-
tized state. Thus, dansyl-C6-choline fluorescence can be
used as a measure of receptor desensitization. Using this
technique, it was demonstrated that n-alcohols en-
hanced the apparent desensitization rate of nAchRs
(Raines et al., 1995), corroborating ion flux studies in-
dicative of enhanced receptor desensitization by alcohols
(discussed in Lovinger, 1997).

Whole-cell recordings in the presence of long-chain
n-alcohols show a time-dependent decrease in current
amplitude after combined exposure to agonist and alco-
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hol. This inhibition depends on the presence of agonist
and the channel being in the open state (Murrell and
Haydon, 1991; Forman et al., 1995; Wood et al., 1995),
suggesting a use-dependent block of channels by n-
alcohols, which bind within the conduction pore-lining
region.

Differential overall effects of ethanol (potentiation of
current) versus longer n-alcohols (inhibition of current)
were also found when human embryonic kidney cells
were transfected with identical human �4�2 combina-
tions (Aistrup et al., 1999; Zuo et al., 2001). It is tempt-
ing to speculate that differential actions of n-alcohols on
a given receptor are due to different alcohol locations
within its target site. Ethanol and more hydrophobic
n-alcohols, indeed, differ in depth of location at the lipid
bilayer/channel complex (Forman and Zhou, 2000) and
thus may interact with distinct nAchR amino acids and
differentially modify overall channel activity. It is note-
worthy that electrophysiological data after receptor cys-
teine-mutagenesis combined with sulfhydryl-specific la-
beling document the existence of at least two n-alcohol
sensing sites in the nAchR �2 subunit: Leu263 (“excita-
tory”) and Leu262 (“inhibitory”), the final receptor re-
sponse (e.g., activation by ethanol, inhibition by octanol)
depending on the relative sensing of each n-alcohol by
these two sites (Borghese et al., 2003).

It is likely that differential drug modification of chan-
nel de-/resensitization process(es) involving distinct
channel sensing sites may lead to different n-alcohol
actions on overall nAchR activity. For example, occupa-
tion of �Glu262 by 3-azioctanol (and probably by hydro-
phobic n-alcohols as well) specifically slows nAchR re-
sensitization, which leads to stabilization of the nAchR
desensitized state(s) and thus current inhibition (For-
man et al., 2007). It is noteworthy that increasing the
ethanol concentration from 0.2 to 1 M (admittedly high
concentrations) linearly increases acetylcholine-induced
fast desensitization maximal rate as a consequence of
ethanol-induced shifting of the equilibrium between
open and fast desensitization states toward the latter
(Wu and Miller, 1994). Moreover, ethanol at concentra-
tions higher than 300 mM usually inhibits mouse mus-
cle nAchRs expressed in X. laevis oocytes (Forman and
Zhou, 2000). As found with octanol (0.25–1 mM) and
butanol (25–100 mM), high ethanol concentrations
(�250 mM) strongly favor the nAchR conversion to a
high-affinity state that is indicative of receptor desensi-
tization (Young and Sigman, 1981).

The simplest explanation for n-alcohol modulation of
nAchR desensitized states is that such modulation is
secondary to a direct alcohol-ion channel protein inter-
action. However, alcohol action secondary to drug inter-
action with bilayer lipids that control channel gating or
to post-translational modification of the receptor that
affects desensitization are also possible. In brief, nAchR
TM segments are arranged in three concentric rings, the
outer two (made of M1/M3 and M4, respectively) being

in direct contact with the lipid environment. Among
membrane lipid species that participate in nAchR gat-
ing, cholesterol, other steroids, and fatty acids deserve
special attention (for review, see Barrantes, 2003). In
particular, cholesterol at concentrations found in native
membranes is needed for agonist activation of nAchR
(Rankin et al., 1997). Fourier-transform infrared reso-
nance spectroscopic analysis of T. californica nAchRs
reconstituted in dioleoylphosphatidylcholine bilayers
shows that cholesterol significantly increases the �-he-
lical content, suggesting that this steroid causes an un-
ordered-to-helix transition that is thought to be critical
for stabilization of the nAchRs (Butler and McNamee,
1993). Moreover, cholesterol is needed for nAchRs to
shift from low to high affinity states (Fong and Mc-
Namee, 1986), and recent data obtained with crystal
violet, which rather selectively labels the nAchR desen-
sitized state, document that both cholesterol and free
fatty acids decrease the crystal violet KD for the receptor
(Fernández Nievas et al., 2008). For years, it has been
known that ethanol “disorders” the lipid bilayer core
(Hitzemann et al., 1986), and ethanol interactions with
bilayers are modulated by the bilayer cholesterol con-
tent (Barry and Gawrisch, 1995; Tierney et al., 2005).
These interactions have been observed using 0.8 to 4.3 M
ethanol in nonaqueous phases, so it is difficult to directly
drive meaningful extrapolations from these findings to
modulation of ion channel function by ethanol concen-
trations that are relevant to alcohol intoxication (i.e.,
below 100 mM in the aqueous phase). Whether ethanol
targeting of nAchR desensitized states is dependent on
cholesterol or other species conforming the lipid shell
that surrounds the nAchR outer rings remains to be
determined.

Finally, several biochemical processes known to be
altered by ethanol, regulate nAchR desensitization, in-
cluding cAMP-dependent phosphorylation (Huganir and
Miles, 1989), protein kinase C activation, and phospha-
tase 2B inhibition (Marszalec et al., 2005).

C. Glycine and Type A �-Aminobutyric Acid Receptors

Ethanol potentiation of GABAA receptor-mediated
current has been demonstrated in a variety of neuronal
preparations and in some studies using heterologous
expression systems, most notably X. laevis oocytes
(Celentano et al., 1988; Aguayo, 1990; Reynolds et al.,
1992; Mihic et al., 1997; Tsujiyama et al., 1997; Sapp
and Yeh, 1998; Homanics et al., 1999; Sundstrom-Poro-
maa et al., 2002; McCool et al., 2003; Wallner et al.,
2003). However, the direct effects of ethanol on this
receptor-channel remain highly controversial, and there
are few demonstrations of receptor potentiation in mam-
malian heterologous systems (Sigel et al., 1993; Marsza-
lec et al., 1994; Sapp and Yeh, 1998; Sundstrom-Poro-
maa et al., 2002; McCool et al., 2003). When potentiation
is observed, increases in the rate of decay of current in
the continuous presence of agonist have sometimes been
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observed (Tsujiyama et al., 1997; Homanics et al., 1999).
Recent studies in some laboratories have demonstrated
potent ethanol potentiation of current mediated by �
subunit-containing GABAA receptors (Sundstrom-Poro-
maa et al., 2002; Wallner et al., 2003), whereas others
have failed to observe such effects (Borghese et al., 2006;
Korpi et al., 2007). It is worth noting in this context that
�-subunit-containing receptors show little or no agonist-
induced desensitization, and thus it is unlikely that
decreased desensitization contributes to potentiation of
this GABAA receptor subtype. However, increased cur-
rent decay is observed in the presence of ethanol (Sund-
strom-Poromaa et al., 2002; Wallner et al., 2003), indi-
cating that desensitization may contribute to shaping
responses mediated by these receptors when ethanol is
present.

Potentiation associated with an increased rate of de-
cay is definitely observed when longer-chain alcohols are
applied to GABAA receptors (Marszalec et al., 1994).
This increase in apparent desensitization seems similar
to the alcohol effects on the 5-HT3 receptor noted above.
No attempt has yet been made, however, to determine
the effect of ethanol on the true desensitization or esti-
mate changes in the desensitization rates constant for
the GABAA receptor. Recent work, however, has shown
that ethanol increases the potency with which neuro-
steroids potentiate the GABAA receptor, and this effect
can be observed even at fairly low ethanol concentra-
tions (Akk et al., 2007). In these experiments, ethanol
did not seem to have any overt effects on receptor de-
sensitization in the presence of potentiating neuro-
steroids. Finally, ethanol has also been shown to inhibit
GABAA receptor function in some studies that examined
receptor function in neurons and mammalian heterolo-
gous systems (Marszalec et al., 1994; McCool et al.,
2003). In one such study, an increase in the decay rate of
GABA-activated current in the presence of ethanol
was found (Marszalec et al., 1994), perhaps indicative
of an increase in receptor desensitization induced by
the alcohol.

Ethanol potentiation of the glycine-gated LGICs has
been consistently observed in both neurons and heterol-
ogous expression systems, particularly in receptors that
contain only the � subunit (Celentano et al., 1988; Reyn-
olds et al., 1992; Aguayo and Pancetti, 1994; Mihic et al.,
1997; Valenzuela et al., 1998; Ye et al., 1998, 2001;
Eggers et al., 2000; McCool et al., 2003). As described
above for the 5-HT3 and GABAA receptors, alcohol po-
tentiation of glycine receptors is sometimes accompa-
nied by increased current decay (Aguayo and Pancetti,
1994; Ye et al., 2001). However, at the low concentra-
tions generally used to assess ethanol effects on glycine
receptors, there is often little or no detectable current
decay in the absence or presence of the alcohol because
of the relatively low forward rate constants for glycine
receptor desensitization. Eggers and Berger (2004) ex-
amined ethanol-induced changes in glycine LGIC kinet-

ics in hypoglossal motoneurons at both macroscopic and
single-channel levels. Desensitization was not explicitly
examined in this study or included in the kinetic model
used to fit the experimental data, because desensitiza-
tion does not seem to contribute to glycine receptor func-
tion during brief agonist exposure. Ethanol increased
the rate of current activation, and increased the time
constant of decay of current activated by brief glycine
application, indicating a decrease in current deactiva-
tion. Potentiation by ethanol could be adequately de-
scribed using a kinetic model that does not include de-
sensitization (Eggers and Berger, 2004), suggesting that
modified desensitization is not required to explain eth-
anol effects on glycine-activated LGICs.

IV. Ethanol and Desensitization of Glutamate-
Activated Ligand-Gated Ion Channels

Alcohols have a predominant inhibitory effect on an-
other major LGIC family, the ionotropic glutamate re-
ceptors. This receptor family includes the AMPA recep-
tor, kainate, and NMDA subtypes, which are named for
the exogenous agonist that best activates each receptor
subtype (Collingridge et al., 2009). In contrast to the
pentameric cys-loop receptors, glutamate-activated
LGICs are tetramers that contain a “venus fly trap” type
of agonist binding domain, three full TM segments, a
re-entrant pore-loop ion conduction pathway, and an
intracellular carboxyl terminus that is often quite long
(Conley, 1996; Collingridge et al., 2009). Each of the
three receptor subtypes can be formed by multiple sub-
units, including GluRs 1 to 4, also known as GluA1 to 4
(AMPARs), GluRs 5–7, also known as GluK1–3, as well
as kainate receptors 1–2, also known as GluK4–5 (kai-
nate receptors), and NMDARs 1–3, also known as
GluN1–3 (NMDARs). Ethanol inhibition of current has
been observed with members of all of these receptor
subtypes. In most neuronal systems, however, ethanol
inhibition of the NMDARs and kainate receptors is more
robust than ethanol actions on AMPARs. However, thor-
ough examination of ethanol effects on AMPARs and
kainate receptors has revealed conditions under which
these receptors are every bit as sensitive to ethanol
inhibition as the NMDARs, as described in sections IV.A
and C.

A. �-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic
Acid Receptor

As mentioned above, ethanol (and other n-alcohols)
inhibits the function of all ionotropic glutamate-gated
LGICs, including AMPA receptors (GluR 1–4). At the
AMPARs, however, the alcohol inhibitory effect criti-
cally depends on the type of agonist used to activate the
receptor and also appears to vary with channel kinetic
state (Möykkynen et al., 2003). Moreover, increased de-
sensitization of AMPARs seems to contribute to ethanol
inhibition of receptor-channel function. AMPARs are

106 DOPICO AND LOVINGER



among the most rapidly desensitizing LGICs in the ner-
vous system: at high agonist concentrations, current
decay proceeds within a few milliseconds after channel
opening (Trussell and Fischbach, 1989). The initial peak
current is unaltered in the presence of ethanol. How-
ever, a steady-state current can be observed in less than
100 ms, which is inhibited at concentrations of ethanol
as low as 10 mM (Lovinger, 1993; Akinshola, 2001;
Möykkynen et al., 2003). Ethanol also potently inhibits
AMPAR-mediated current evoked by low agonist con-
centrations. Under this condition, the peak/steady-state
current ratio is relatively small, reflecting the slower
activation of the channel population. When the partial
agonist kainate is used to activate the AMPAR, however,
desensitization is so rapid that the experimenter is
likely to measure only steady-state current. Under this
condition, ethanol also inhibits ionic current potently.
What accounts for this ethanol preferential inhibition of
steady-state current? Ethanol does not increase the rate
of current decay and thus does not seem to produce a
more rapid entry into the desensitized state
(Möykkynen et al., 2003). However, ethanol may stabi-
lize the desensitized state by decreasing rate constants
leading out of that state(s). Ethanol also produces a
modest increase in the rate of AMPAR recovery from
desensitization. Furthermore, inhibition of steady-state
current is reduced by cyclothiazide, a compound that
greatly slows receptor desensitization, and by the L497Y
mutation in GluR1, which slows desensitization
(Möykkynen et al., 2003). Collectively, these findings are
consistent with the idea that stabilization of desensiti-
zation is an important mechanism of ethanol inhibition
of AMPARs.

The preferential effect on desensitization seems to
account for the relatively low potency of ethanol to in-
hibit most AMPAR-mediated synaptic responses. At
most synapses, the excitatory postsynaptic responses
mediated by AMPARs are rapid and transient, and there
might not be sufficient time for receptors to desensitize
during the brief period that glutamate is present in the
synaptic cleft. Thus, it is not surprising that ethanol
produces only a modest inhibition of this synaptic cur-
rent, because the situation is analogous to the ethanol
resistance of the peak current observed just after appli-
cation of a high concentration of a full agonist (i.e.,
glutamate or AMPA). Nevertheless, it remains unclear
whether and when desensitization contributes to inter-
cellular communication involving AMPARs. At some
synapses, the duration of the elevation in glutamate in
the synaptic cleft during normal transmission is suffi-
ciently long to allow for the onset of desensitization
during the synaptic response (Jones and Westbrook,
1996).

B. N-Methyl-D-aspartate Receptor

As found for AMPAR, ethanol usually inhibits
NMDAR function (Lovinger, 1997; Woodward, 2000).

However, the consensus view at present is that ethanol
inhibition of NMDA receptors does not involve altered
desensitization. Ethanol does not alter the decay of mac-
roscopic current in the continuous presence of agonist
(Peoples et al., 1997; Woodward, 2000). However, this
might be expected even when the desensitization rate
constant is altered, given that initial current activation
and peak current are reduced by ethanol, effects that
would slow any observable decay. Under some condi-
tions, ethanol does increase the ratio of steady-state-to-
peak-current ratio, perhaps indicating a change in de-
sensitization secondary to changes in current activation.
These effects are most prominent with continuous eth-
anol application and intermittent agonist exposure
(Popp et al., 1999). There is no strong evidence, however,
implicating desensitization in this effect of ethanol.

Single-channel analysis reveals that ethanol inhibi-
tion of NMDAR involves decreases in burst frequency,
burst duration, and intraburst open channel lifetime but
no changes in closed-time distributions (Wright et al.,
1996). The changes in burst frequency and intraburst
open lifetime could be consistent with increased desen-
sitization. Furthermore, mutations that alter ethanol
inhibition also alter desensitization kinetics, and there
is some correlation between the effects of individual
mutations on ethanol actions and their effects on desen-
sitization (Ren et al., 2008). In conclusion, although eth-
anol does not have overt effects on the decay kinetics of
NMDAR-mediated macroscopic current, there may be
some role for stabilization of channel desensitized
state(s) in ethanol’s inhibitory effects on this receptor-
channel.

C. Kainate Receptor

As discussed for the other members of the family of
glutamate-gated ion channels, kainate receptor-medi-
ated currents are reduced in response to ethanol (Valen-
zuela and Cardoso, 1999; Weiner et al., 1999; Carta et
al., 2003; Läck et al., 2008). Little is known at present
about the effect of ethanol on kainate receptor kinetics.
Indeed, there are limited data from experiments directly
examining ethanol effects on receptor-channel function
in isolated cells exposed to appropriate agonist applica-
tion. Ethanol inhibits current activated by application of
kainate and domoate to human embryonic kidney cells
expressing different combinations of kainate receptor-
forming subunits (Valenzuela and Cardoso, 1999). Eth-
anol potency was relatively low in this preparation.
However, the currents examined in this study consisted
only of a steady-state component; thus, it was not pos-
sible to assess ethanol effects on desensitization kinet-
ics. Activation by glutamate or kainate normally pro-
duces rapid desensitization of kainate-preferring
receptors (Zorumski and Thio, 1992; Cui and Mayer,
1999), but ethanol effects have not been examined under
conditions in which this desensitization is observed.
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Ethanol has been reported to produce a potent inhibi-
tion of kainate-receptor-mediated synaptic responses in
projection neurons in hippocampus and basolateral
amygdala, with data supporting a postsynaptic site of
ethanol action (Weiner et al., 1999; Carta et al., 2003;
Läck et al., 2008). The kainate receptors in this brain
region seem to be formed by GluRs 5 and 6 and KA2
subunits (Li and Rogawski, 1998). Ion current kinetics
has not been examined in these neurons, and thus it is
difficult to determine the contribution, if any, of desen-
sitization to the ethanol inhibition.

V. Ethanol and Desensitization of Extracellular
ATP-Gated Ion Channels

Extracellular ATP-gated ion channels (P2Xs) are
structurally different from both cys-loop and glutamate-
gated ionotropic receptors: these cationic channels are
considered trimeric receptors with two putative TM seg-
ments, a large extracellular loop (where the endogenous
ligand ATP is thought to bind), and two small cytosolic
amino and carboxyl ends per subunit (North, 2002;
Jiang et al., 2003; Vial et al., 2004). Compared with
other ionotropic receptors gated by extracellular ligands,
P2Xs constitute a relatively new family, yet their alcohol
sensitivity (for review, see Weight et al., 1999; Dilger,
2002; Davies et al., 2006) has been explored since their
initial pharmacological characterization. First reported
in isolated bullfrog dorsal root ganglion neurons (Li et
al., 1993), ethanol inhibition of native P2X receptors was
also found in rat hippocampal CA1 neurons (Li et al.,
2000) and in a slice preparation of rat ventral tegmental
area that contains dopamine neurons and the GABAer-
gic nerve endings impinging upon them, the P2X recep-
tors being presumably located in the GABAergic presyn-
aptic membrane (Xiao et al., 2008). Ethanol inhibition of
native P2X was replicated in recombinant homomeric
P2X2 and P2X4Rs expressed in X. laevis oocytes and
HEK293 cells. Data from X. laevis oocytes show that
P2X4R are more sensitive to ethanol inhibition than
P2X2R, whereas P2X3R are activated by the drug (Da-
vies et al., 2002, 2005), underscoring that overall etha-
nol action on P2XR is subunit-dependent. It is notewor-
thy that native P2XR in the CNS, including those in
dorsal root ganglia neurons, are predominantly heteroo-
ligomers, such as P2X2�P2X3 (Robertson et al., 2001;
Vial et al., 2004; Alexander et al., 2008), so the relative
contribution of subunit composition versus other cell
factors when studying ethanol actions on recombinants
versus native P2XRs remains to be established.

Most P2XRs, whether native receptors or recombinant
proteins after heterologous espression, display desensi-
tization with maintained application of ATP or structur-
ally related receptor agonists. However, desensitization
rate in the continuous presence of agonist is also greatly
dependent on subunit composition, with P2X3R-medi-
ated current decaying in several seconds and P2X7R-

mediated currents remaining relatively steady for sev-
eral minutes (Conley, 1996; Vial et al., 2004). Studies on
native P2X channels showed that ethanol (50–100 mM)
inhibition of ATP-evoked macroscopic current was re-
lated to a significant acceleration of current deactivation
in the absence of changes in activation. Ethanol action
on deactivation, however, was independent of ATP con-
centration (Li et al., 1998). In the absence of detailed
kinetic models, we can only speculate that a significant
contribution of ethanol modulation of ATP-mediated de-
sensitization to overall drug action on this receptor is
unlikely. On the other hand, receptor recovery from
desensitization is controlled by type of agonist used and,
more importantly, by intracellular signals, including
Ca2�

i. The role of these factors in determining ethanol
interaction with desensitized P2Rs and/or overall etha-
nol action on these receptors remains to be determined.

VI. Ethanol and Desensitization of Potassium
Channels That Are Gated by Intracellular

Ligands

In this section, we consider some ion channels that,
based on structural and functional considerations, do
not belong to the LGIC superfamily. Indeed, their gating
processes are governed by biological signals other than
ligand binding (e.g., transmembrane voltage). Binding of
specific ligands, however, critically controls overall
channel activity and may determine the channel re-
sponse to ethanol.

A. Calcium- and Voltage-Gated Potassium Channel

Short-term exposure to ethanol concentrations that
modify behavior in both invertebrates and vertebrates
(including humans) modulate the steady-state activity of
calcium- and voltage-gated potassium (BK) channels in
a wide variety of preparations, as reported using native
and recombinant channels (for review, see Brodie et al.,
2007). BK channels are tetrameric proteins consisting of
channel-forming � (encoded by Slo, Slo1, or KCNMA1)
subunits. These subunits include a TM6 core that is
highly conserved with that found in purely voltage-gated
potassium channels (Latorre, 1994; Lu et al., 2006;
Salkoff et al., 2006). However, BK channels also contain
1) an S0 segment resulting in an exoplasmic amino end
(Meera et al., 1997), and 2) a large cytosolic carboxyl end
that includes sensing regions for calcium and/or magne-
sium, and important consensus areas for channel pro-
tein membrane insertion and post-translational modifi-
cation (Schubert and Nelson, 2001; Weiger et al., 2002;
Wang et al., 2003; Lu et al., 2006; Salkoff et al., 2006). In
most tissues, BK channel complexes consist of the asso-
ciation of � subunits with small (TM2), regulatory �
subunits, the latter showing a differential distribution
among tissues (Behrens et al., 2000; Brenner et al.,
2000). There are four � subunit types encoded by sepa-
rate genes (KCNMB1–4), which together with abundant
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KCNMA1 splicing (Fury et al., 2002), provide distinct
phenotypes to native BK channels in different tissues
(Orio et al., 2002).

As found with many other ion channels, short-term
exposure of recombinant or native BK channels to eth-
anol may result in increase, no change, or decrease in
channel steady-state activity (NPo). These variant re-
sponses have been documented in highly simplified sys-
tems, such as cloned slo1 channels expressed in cell-free
membrane patches (for review, see Brodie et al., 2007),
with some studies ruling out ethanol-induced changes in
N as contributing factor to variability in drug action
(Dopico et al., 1998; Liu et al., 2008). In addition, a
time-dependent component of BK channel responsive-
ness to ethanol; that is, channel responses to short-term
alcohol exposure change qualitatively and/or quantita-
tively with repeated or protracted (longer than 2–3 min)
drug application was first noted with neurohypophysial
terminal channels (Dopico et al., 1996) and since then
has been confirmed with both native and recombinant
channels (Liu et al., 2004; Pietrzykowski et al., 2004;
Yuan et al., 2008). Experimental conditions in all these
studies also rule out that changes in N could contribute
to the reduced response in NPo that is evoked by ethanol
after 2 to 3 min of drug exposure.

Ethanol modifies BK Po without altering ion conduction,
intrinsic, voltage- or physiological magnesium-driven gat-
ing. Instead, alcohol specifically facilitates calcium-driven
gating, which results in differential ethanol effects on
channel activity as a function of activating ligand: poten-

tiation at low (�10 �M) and inhibition at high (�10 �M)
internal calcium concentrations (Liu et al., 2008). When
internal calcium reaches 10 to 1000 �M, BK channels
enter a low Po gating mode (Rothberg et al., 1996), a mode
that can be conceptualized as an activating ligand-driven
set of desensitized states (Liu et al., 2008; see kinetic model
in Fig. 2). Remarkably, ethanol-induced reduction of BK
channel activity and thus current is caused by the alcohol
favoring channel dwelling into this low Po mode. Moreover,
BK channel differential responses to ethanol involve spe-
cific calcium-recognition sites (the calcium-bowl and the
Asp362/Asp367 calcium site) in the slo1 carboxyl end, with
the Asp362/Asp367 calcium high-affinity site being neces-
sary and sufficient to sustain ethanol-induced inhibition.
Indeed, slo1 D362A/D362A mutants are not only refractory
to ethanol-induced inhibition but fail to enter the calcium-
driven, low-activity mode when evaluated at 100 �M in-
ternal calcium (Liu et al., 2008).

On top of the fundamental interplay within the slo1
subunit, activating Ca2�

i and ethanol, BK channel re-
sponses to short-term alcohol exposure are fine-tuned by
an orchestration of factors. They include post-translational
modification of slo1 (Liu et al., 2006), accessory � subunit
coexpression (Martin et al., 2004; Feinberg-Zadek and Tre-
istman, 2007; Liu et al., 2008; Bukiya et al., 2009), and the
lipid species around the channel protein (Crowley et al.,
2003, 2005; Yuan et al., 2008). It is highly likely that some
of these regulatory elements (e.g., � subunits; Feinberg-
Zadek et al., 2008), alone or in concerted fashion, play a

FIG. 2. Simple, empirically derived kinetic models showing that ethanol modulation of Ca2�
i-dependent channel dwelling into a low activity (Po)

mode is a major determinant of the final drug action on BK channel activity. At high concentrations of activating ligand (Ca2�
i), channel activity could

be satisfactorily modeled only by introducing an additional component corresponding to the Ca2�
i-driven low-activity mode (C versus A), which can

be interpreted as a set of channel desensitized states. At low ligand concentrations, ethanol prevents channel entry into long-closed states by
increasing the C33C2 transition and decreasing O33C3. In addition, ethanol stabilizes openings within the normal-activity mode by shifting the
O27 C2 equilibrium toward O2 (B versus A). These kinetic changes explain ethanol-induced potentiation of BK Po at low ligand concentrations, as
widely reported (Brodie et al., 2007). At high activating ligand concentrations, however, ethanol mildly diminishes the C33C2 transition and
drastically shifts the C37 low activity mode equilibrium toward the latter (5 times) (D versus C), favoring channel dwelling within the low-activity
mode. These kinetic changes explain ethanol-induced reduction of BK Po at high activating ligand concentrations (Liu et al., 2008). Main changes
introduced by ethanol and/or increase in internal calcium are bolded. [Adapted from Liu J, Vaithianathan T, Manivannan K, Parrill A, and Dopico AM
(2008) Ethanol modulates BKCa channels by acting as an adjuvant of calcium. Mol Pharmacol 74:628–640. Copyright © 2008 American Society for
Pharmacology and Experimental Therapeutics.
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key role in modulating the temporal component of BK
channel responses to ethanol.

B. G Protein-Coupled Inwardly Rectifying Potassium
Channel

As found with calcium-activated channels of the BK
type, short-term exposure to ethanol concentrations
(and other n-alcohols) that modify behavior modulate
the steady-state activity of native and recombinant G
protein-coupled inwardly rectifying potassium (GIRK)
channels. Remarkably, whether homomeric or hetero-
meric, GIRK is the only subset of inwardly rectifying
potassium channels that is sensitive to clinically rele-
vant concentrations of ethanol (Kobayashi et al., 1999;
Lewohl et al., 1999; Yamakura et al., 2001; Blednov et
al., 2002).

Upon Gi/Go protein-coupled receptor activation, G pro-
tein �� subunits are released and bind to the amino and
carboxyl ends of GIRK channels with consequent chan-
nel opening (Sadja et al., 2003). It is conceivable that
activating ligand-induced channel modulation may con-
dition ethanol responses. Using chimeric channels, Le-
wohl et al. (1999) dissected apart the carboxyl end re-
gions that are involved in ethanol sensing and G protein
activation, strongly suggesting that �� subunit binding
on GIRK channels is not sufficient for ethanol sensitiv-
ity. Likewise, experiments conducted in the presence of
pertussis toxin or antisense oligonucleotides directed
against G�1 subunits indicate that ethanol modulation
of GIRK is independent of Go/Gi activation (Kobayashi et
al., 1999). It should be noted, however, that desensitiza-
tion of GIRK currents is evident within a few minutes, a
phenomenon that is due to channel targeting by Gq
downstream products (Jan and Jan, 2000). Thus,
whereas GIRK1/4 channel responses to ethanol are sus-
tained for at least 20 min (Lewohl et al., 1999), any
possible interaction between GIRK channel desensitiza-
tion and ethanol remains to be formally tested.

VII. Conclusions and Implications

We have briefly summarized the ample evidence doc-
umenting ethanol modulation of receptor desensitiza-
tion for a wide variety of structurally unrelated iono-
tropic receptors. The contribution of receptor
desensitization to the overall ethanol action on ion chan-
nel behavior, however, varies wildly, even among mem-
bers of structurally related ion channels. For example,
within the cys-loop family of ionotropic receptors, etha-
nol interaction with desensitized receptors is a major
contributor to the final drug action on 5-HT3 and
nAchRs but not on GABA-A and GlyRs. In the case of
ionotropic receptors gated by glutamate, desensitization
processes and their contribution to overall channel ac-
tivity are complex. Thus, the degree of contribution, if
any, of receptor desensitization to ethanol’s final effect
on receptor activity and thus ionic current remains

largely unknown (see Table 1). The paucity of current
data prevents us from establishing a role of receptor
desensitization in ethanol actions on P2XRs. Regarding
K� channels gated by intracellular ligands, the presence
of a Ca2�

i-driven, low activity mode in BK channels is
comparable with a set of channel desensitized states,
and ethanol facilitation of channel entry into this mode
explains drug inhibition of channel activity. In contrast,
it is unlikely that G proteins play a significant role in
ethanol overall action on GIRK, although the specific
contribution of Gq signaling-mediated channel desensi-
tization to ethanol actions remains to be tested.

The interactions between ethanol and receptor desen-
sitization are of critical importance when designing ex-
periments to probe alcohol action on ionotropic recep-
tors. If agonist/alcohol application is too slow, the
receptors will begin to desensitize before drug concen-
trations have reached equilibrium. This may cause the
investigator to underestimate or even miss altogether
(as discussed for AMPAR) the potentiation or inhibition
produced by alcohols. Ideally, drug application should be
as rapid as possible, and preferably in the millisecond or
even submillisecond range when dealing with LGICs
that exhibit strong and rapid desensitization (e.g.,
AMPAR, nAchR fast desensitization, etc.). These consid-
erations may help explain conflicting results regarding
ethanol action on defined channel proteins in highly
simplified in vitro systems.

The role of desensitization in alcohol action may be-
come more prominent in special pathophysiological sit-
uations or subcellular domains. For example, during
intense high-frequency neuronal firing, epileptiform ac-
tivity, or stroke, extracellular glutamate concentrations
become elevated over normal basal levels (Choi and
Rothman, 1990; Meldrum, 1994) and thus could produce
low-level AMPA receptor activation and desensitization.
In these situations, ethanol may produce potent inhibi-
tion of AMPAR-mediated synaptic transmission. Like-
wise, whereas ethanol activates BK channels at resting,
submicromolar cell calcium levels, drug action will turn
into inhibition of current due to channels dwelling in a
“desensitized” low activity mode when activating cal-
cium exceeds the low micromolar range (Liu et al.,
2008). These calcium levels are reached close to the BK
channel in areas of neurotransmitter release (Llinás and
Moreno, 1998) where these channels are clustered, and
also in vascular smooth muscle during contraction
(Pérez et al., 2001). Moreover, ethanol has been reported
to increase cytosolic calcium in brain microsomes
(Daniell and Harris, 1991), and induce apoptosis in
cerebellar granule cells (Bhave and Hoffman, 1997), a
process in which cystosolic calcium may reach �1 �M.
Activation of BK channels has been reported to protect
against apoptosis (Kim et al., 2004), and ethanol fa-
voring BK channel dwelling in a low Po gating mode
would likely impair one of the major conductances
that can protect a cell from toxic calcium levels. Thus,
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ethanol-induced BK channel inhibition, together with
internal Ca2� release caused by ethanol itself, could
synergistically favor the cell entering apoptosis.

Finally, ethanol desensitization interactions may
bring critical mechanistic insights into drug abuse and
coabuse. For example, the vast majority of nAchRs of the
�4�2 type (prevalent in brain) will be desensitized at
nicotine concentrations reached in the brain by regular
smokers (Brody et al., 2006). Ethanol at toxicologically
relevant concentrations interferes with this receptor de-
sensitization, an action that could contribute to the co-
abuse of ethanol and nicotine, as discussed by Davis and
de Fiebre (2006). In a more general way, an increased
contribution of desensitized channel receptors to the
overall receptor-mediated response and/or facilitation of
desensitization by ethanol will reduce the receptor re-
sponse, eventually contributing to acute tolerance to
ethanol exposure. It is noteworthy that reduced respon-
siveness to ethanol is one of the characteristics thought
to contribute to the risk of developing alcoholism in
humans (Schuckit, 1985, 2000).
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Narahashi T, Söderpalm B, Ericson M, Olausson P, Engel JA, Zhang X, Nordberg A,
Marszalec W, Aistrup GL, Schmidt LG, et al. (2001) Mechanisms of alcohol-
nicotine interactions: alcoholics versus smokers. Alcohol Clin Exp Res 25:152S–
156S.

Nashmi R and Lester HA (2006) CNS localization of neuronal nicotinic receptors. J
Mol Neurosci 30:181–184.

Nievas GA, Barrantes FJ, and Antollini SS (2007) Conformation-sensitive steroid
and fatty acid sites in the transmembrane domain of the nicotinic acetylcholine
receptor. Biochemistry 46:3503–3512.

North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067.
Olsen RW, Hanchar HJ, Meera P, and Wallner M (2007) GABAA receptor subtypes:

the ”one glass of wine“ receptors. Alcohol 41:201–209.
Orio P, Rojas P, Ferreira G, and Latorre R (2002) New disguises for an old channel:

MaxiK channel beta-subunits. News Physiol Sci 17:156–161.
Partin KM, Patneau DK, and Mayer ML (1994) Cyclothiazide differentially modu-

lates desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptor splice variants. Mol Pharmacol 46:129–138.

Peoples RW, Li C, and Weight FF (1996) Lipid vs protein theories of alcohol action
in the nervous system. Annu Rev Pharmacol Toxicol 36:185–201.

Peoples RW, White G, Lovinger DM, and Weight FF (1997) Ethanol inhibition of
N-methyl-D-aspartate-activated current in mouse hippocampal neurones: whole-
cell patch-clamp analysis. Br J Pharmacol 122:1035–1042.
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